Selene Rendezvous 13

Roche Harbor, WA

Lithium Ion Batteries for Boats

Fact or Flame?

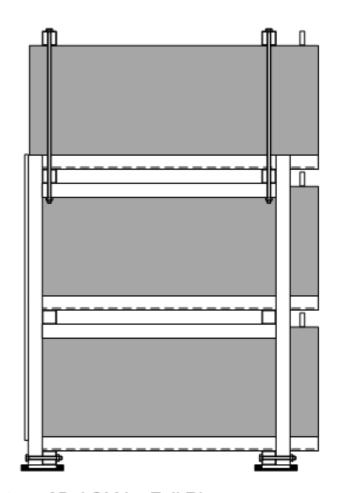
Dean Klein

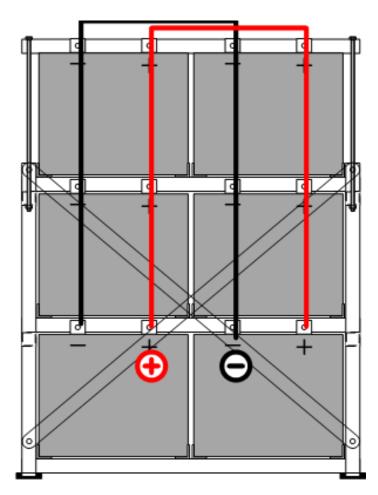
SaltHeart (5319)

- Originally named "Outward Bound".
- SaltHeart is a 12V boat, with a ProSine 3.0/12 inverter/charger, Balmar 320A alternator and MC612 regulator.
- Batteries were in the engine room, aft on the port side in a nicely-made rack.
- 12 telecom-style batteries, 90lbs each, in Selene boxes.
- We bought S5319 in 4/2011 and renamed her SaltHeart.

The Genesis of an Idea

- Initial battery woes
 - Battery system had been re-done, but the replacement batteries proved insufficient.
 - Capacity was allowing only 1 day on the hook
 - Windlass performance was inadequate
 - Thrusters were good, but had separate 24V banks each.
- Telecom batteries are not good for marine deepcycle application: Designed for infrequent discharge cycles
- Noticed a slow charge rate, cause???
- Upgraded to 4 FullRiver DC260-12 8D AGM batteries. (260Ah*4=1040Ah...) Painfully...


The Death of a Battery


- Noticed 2 things:
 - Charging by the Balmar alternator was slow and slower.
- Discovered two things:
 - Only one output from the Balmar alternator was connected. Only 160A, not 320A
 - Battery and alternator temp sensors were swapped to regulator.
- Regulator would prematurely reduce bulk charge voltage (and thus current), never getting the batteries to a full charge.
- Fixed this before the batteries were damaged.

The Death of a Battery, Part 2

- After 18 months of use, capacity was not satisfactory. (<300Ah usable)
- Noticed something else:
 - Several times I came to the boat to find the batteries dead and the charger off.
- Discovered something else:
 - The ProSine charger would not start charging after a power interruption. This, as it turns out, is a setup menu option.
 - Recommendation: Don't do this!!!
- Designed a new battery rack for 6 FullRiver 8D batteries, but then...

6x8D Battery Rack

Battery: 8D AGM by Full River

Lithium Ion Batteries

- ▶ I had been using Lithium Ion batteries for 10+ years:
 - Computers
 - Power tools
 - RC planes, helicopters and cars
 - High powered rocketry
- Never a failure
- Superior energy density
- Lighter weight
- In use by Coastal Craft

Lithium Ion Battery Chemistries

Type	Chemistry	Short Form	Notes	
Lithium Cobalt Oxide	LiCoO ₂	Li-Cobalt	High capacity: Cell phones, laptop, camera	
Lithium Manganese Oxide	LiMn ₂ O ₄	Li-Manganese	Most safe. Lower energy density than Li-cobalt, but high specific power and long life	
Lithium Iron Phosphate	LiFePO ₄	Li-phosphate		
Lithium Nickel Manganese Cobalt Oxide	LiNiMnCoO ₂	NMC		
Lithium Nickel Cobalt Aluminum Oxide	LiNiCoAlO ₂	NCA	Gaining importance in EV, grid storage	
Lithium Titanate	Li ₄ Ti ₅ O ₁₂	Li-titanate		

Chemical Soup

- Lithium + water = fire!
 - (Don't douse your Tesla!)
- Lithium Ion + failure = runaway!
 - (Dreamliner nightmare!)
 - Must detect a failure before it happens, or very early after the failure. Lithium Ion batteries need battery management systems.
- Lead-Acid + seawater = chlorine gas!

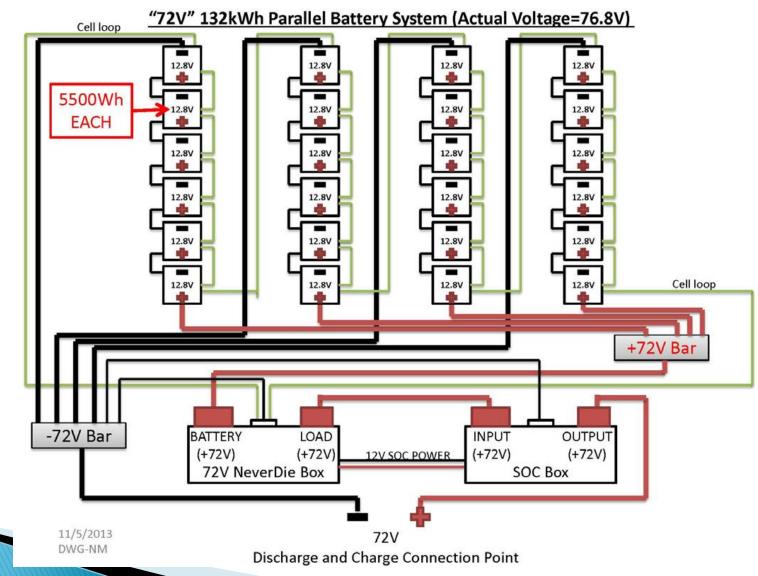
Other Lithium Ion No-No's

- No overvoltage
 - No equalization cycles
 - No thermal compensation
 - Pay careful attention to charger profiles
- No deep discharges!
 - Take care to balance cells
- Very flat voltage until ~95% discharged
 - Deep discharge sneaks up on you.
 - Voltage detection methods not useful
- Watch Temperature:
 - \circ -4° to 140°F (-20° to -60°C)

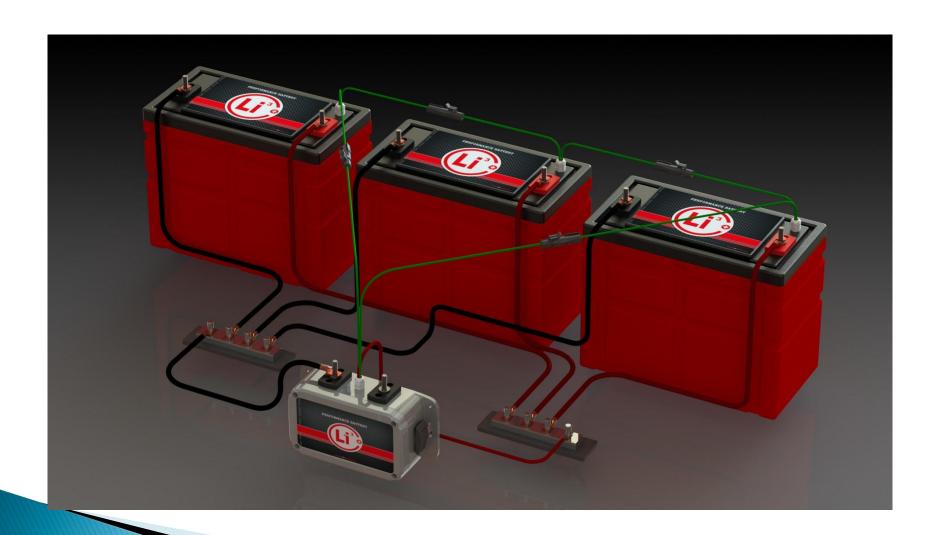
The Lithionics Solution

- Monitor each battery cell at the cell.
 - Distributed vs. centralized management
 - Slightly more expensive
 - Monitor temperature, voltage, balance
- Protect the bank from overvoltage and undervoltage.
 - Use the "Never-Die" box
 - Check for cell balance and correct as needed using a precision charger
- Balance the loads between parallel cells
 - Equal length cables
 - Heavy bus bars

Parallel Connections in Battery



At Cell Monitoring, Shutdown


On each cell install a microcontroller & Sensor ADVANTAGES:

- ON-CELL Data Collection is Instantly Processed and Compared to EPROM Values of That Cell's Control Standards
- GOOD-BAD (State-of-Health) Decisions Continuously Broadcast Via Proprietary Single-Wire OPTO-ELECTRIC Communication Protocol that Features ZERO Data Distortion to Main Computer
- ON-CELL Balancing is CRITICAL: More Accurate, Free from Connector-Wire Induced Voltage Drops and Resistance
- Each Per-Cell Microprocessor has the Capability to Judge and Shut-Down the Entire Battery: Example....a 48 Volt Battery Has 17 Series-Connected Computers Using GO/NO-GO Logic

Example

As Done on SaltHeart

Dean's Improvements

- Moved batteries out of engine room to commissary.
 - Lower, more consistent temperature
 - Side benefits:
 - Closer to Inverter/charger
 - The biggie:
- Removed measurement shunts in favor of Hall-effect current sensors. (Using Maretron DCM-100 NMEA2000 System)

SELENE-5319 DC 12V BATTERY CHARGE AND DISTRIBUTION SYSTEM ProSine 3.0/12 Newmar PT-60 NMEA 2000 Current Sense Pathmaker 135A Charger/Inverter **Battery Charger** Fuse 1 2 3 OUT 400A 320A $\oplus \oplus \oplus$ **BYPASS** House Lithionics Alternator Z. N. N.C. NeverDie Fuse ON/OFF 400A BMS Fuse 165A 120A IN Main Alternator To DC Distribution C.B. Panel Fuse 40A 60A 400A BluSea To Furnace Genset Combiner **Q** Alternator To Furnace ➤ DC Negative C.B. 65A All battery cables are equal length, 2/O Main Engine Generator Sealed Battery Battery Lead acid 12V 200AH 12V 120AH Lithionics Lithionics Lithionics Sealed Lithium Ion Lithium Ion Lithium Ion Lead acid Phosphate Phosphate Phosphate SaltHeart

House Battery

#2

12V 440AH

House Battery

#3

12V 440AH

House Battery

#1

12V 440AH

REVISION HISTORY

Following Li Ion Phosphate battery installation

Following NeverDie bypass installation

1.0

2.0

6/2/13

7/26/13

PROJECT:

DRAWN BY:

REVISION:

TITLE:

DATE:

SELENE 5319

DC WIRING

July 26, 2013

D. Klein

2.0

The Economics...

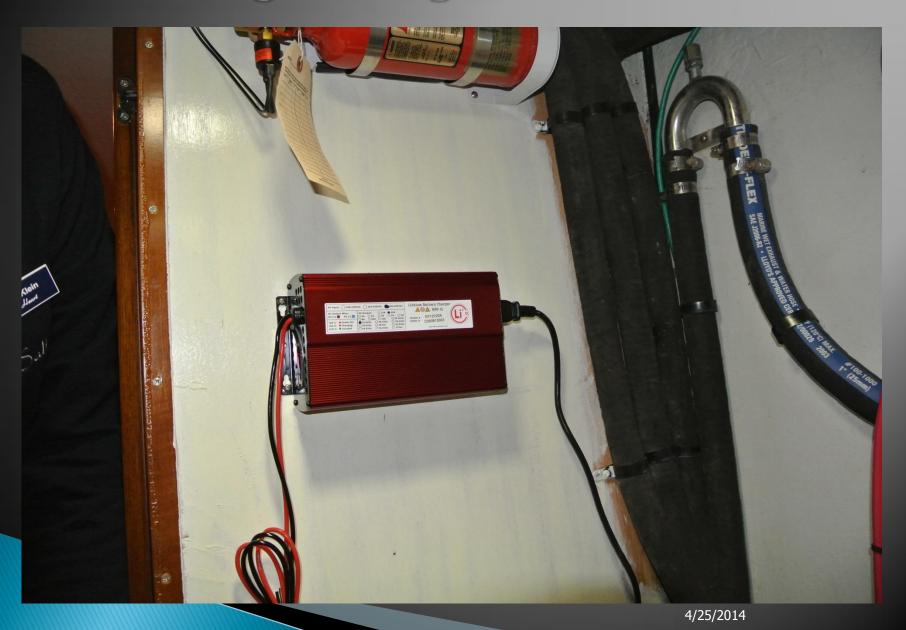
	AGM	Lithium-lon	
Maker	Lifeline	Lithionics	
Part number	GPL-8DL	GT12V450A-8D	
Raw Capacity	255	450	Ah
Depth of Discharge	50%	90%	
Useable Capacity	127.5	405	Ah
Batteries Required for a			
1200Ah useable bank	10	3	Batteries
Lifetime Cycles	1000	5000	Cycles
Weight/Battery	156	110	lbs
Total Weight	1560	330	lbs
Cost/Battery	\$600.00	\$5,000.00	Each
Total Price	\$6,000.00	\$15,000.00	Total
Expected Cycles/Year	150	150	Cycles
Expected Lifetime	6.7	33.3	Years
Cost/Cycle	\$6.00	\$3.00	per cycle

Experiences

- ▶ 3–4 days at anchor without charging.
- Improved windlass and davit performance.
- Fast charging
- Alternator heat due to higher charge current.
 Have upgraded regulator, but have not yet programmed this.
- Never-Die trips fixed by tricking the ProSine charger.

Trick your charger

- Most chargers (and alternator regulators) will run just fine without battery temperature sensing. Many allow manual setting of battery temperature. By adjusting the charger's battery temp setting to output voltage can be tweaked.
- It may also be possible to replace the battery temp sensor with a resistor or potentiometer
 but I have not tried this.
- For the ProSine 3.0 I set the battery temp to "warm" and the voltage is perfect.


Commissary View

NeverDie BMS

Balancing Charger

NeverDie Bypass

Done!

The Bonus

Maretron DCM-100 System

Lithionics Contact Info

Phil Silberhorn

phil@lithionicsbattery.com

(727)726-4204

Lithionics

2449 McMullen Booth Rd

Clearwater, FL 33759

Group: "DK Selene" should get you a discount.

Questions?